Thursday, 3 December 2015

A Political Fantasy, Part 6: Agriculture, an Overview

In this series of "Political Fantasy" posts I've been talking about how enlightened government policy could smooth the upcoming transition to a sustainable, low energy economy. Of course, this is clearly a fantasy, since political realities make it extremely unlikely that governments will do anything but continue to support "business as usual". It's a nice fantasy to play with though, and I find it a good way to discuss the issues that we'll have to deal with ourselves when it finally becomes clear that our governments aren't coping effectively.

Long time readers of this blog are aware that I see climate change, resource depletion and fundamentally flawed economic systems leading to a slow collapse of industrial civilization. This collapse is, in fact, already underway and it is not something we can fix or avoid. We just have to adapt to it as best we can. That's where the "sustainable, low energy economy" comes in.

We'll have to switch over to renewable energy sources and this is going to leave us with a lot less energy to work with, 10 to 20% as much as we are currently using. In my last post I talked about how various sectors of our economy will adapt to use less energy. The big one that I left out, and promised I'd cover soon, was agriculture.

Turns out, I have a lot to say about this subject. Enough, it seems, for 3 posts rather than just one. In this first post of the three, I'll give a quick overview of the subject.

The modern industrial agriculture which dominates food production in the developed world and is currently striving for a similar position in the developing world, is not well suited to adapt to the challenges that lie ahead of us. It is just one more industry doing its best to continue with business as usual and headed directly towards disaster because of it. One expects that, because people do need to eat, governments will make some particularly heroic and misguided efforts to keep industrial agriculture going, when what they need to do is lead the transition to a more sustainable way of feeding ourselves. Unfortunately, the word "sustainable" has seen so much abuse that it's going to take a bit of effort to explain what I mean by that.

The subject of agriculture and food has become very much politicized, with various different ideologies determined to win the argument regardless of what the facts, evidence or reasonable scientific conclusions might indicate. A number of "hot button" issues, false dichotomies, really, have become central to the debate, even though they are not even close to the main things we should be worried about. I firmly believe that whenever you see a situation being described as a conflict between opposing two sides, what you are actually seeing is a set of distortions that do not accurately reflect a much more complex reality. These distortions have been created by people who have chosen up sides and are determined to have their side win, regardless of the consequences.

These ideologies are supported by all sorts of biases and fallacies and by what I call framing errors—focusing on the part of the situation that suits your argument, drawing a frame around it that excludes the inconvenient facts that would favour the other side, or perhaps even discredit both sides. I'll try to avoid such distortions in what follows.

Today's agricultural discussion tends to be framed as industrial versus organic, but this is in itself a distortion. With apologies to many friends, gardeners and farmers, who are practicing sustainable agriculture and calling it "organic" with the best of intentions, the label has been co-opted over the last few decades by a branch of industrial agriculture which uses the positive connotations of the word "organic" to get better prices for their "organically" grown products. In other words, organic food has become little more than a lucrative marketing strategy. Just about the only difference between these people and the rest of industrial agriculture is that the pesticides they use are from a list which is supposedly "naturally sourced". But the chemicals on this list are in many cases more toxic, less specific and more persistent in the environment than the synthetic pesticides used by non-organic farmers. If you take a close look at that list, you'll quickly become confused about what the words "natural" and "organic" actually mean. In their current usage, they don't mean very much. other than what suits the business plans of those "industrial" organic farmers.

The fallacy here is known as an "appeal to nature", and is based on the idea that anything which is "natural" must be good, particularly when it comes to food and the sorts of "chemicals" which are used in agriculture. Of course all matter is made up of chemicals, but what the people who fall for this fallacy mean is "synthetic chemicals". A couple of centuries ago people believed that it wasn't possible to synthesize the chemicals involved in life, but this was soon proved wrong. Today, with sufficient effort, any naturally occurring chemical can be synthesized, so the distinction is largely meaningless. Further, there are many naturally occurring chemicals which are highly toxic and many synthetics which are of low toxicity and considerable utility.

Another fallacy is that there is no safe dose of harmful chemicals, however small. In fact, toxicity is indeed determined by dose. The level of pesticides that one is exposed to via food is so low as to be of no concern—and that is true whether the food is grown conventionally or organically. Exposure of agriculture workers is another matter and one of real concern.

In my experience, the people who are most in love with the idea that "nature is good" are city dwellers who have very little contact with nature. When they think of nature, they are picturing a park, the sort of place they imagine people lived before modern civilization came along and disturbed things. Of course, this is pretty far from the truth. Humans haven't lived naturally since we started to use fire and make tools, around 2 million years ago.

People who have more experience with nature have more respect for it and are well aware that that it can be powerfully destructive. Mankind is definitely part of nature, but the idea that there is a "balance of nature" and that we once lived in harmony with it is in itself a fallacy. Nature is always being disturbed and responds by moving toward a new equilibrium, only to be disturbed again and so on. Today humanity is doing much of the disturbing and it looks we may well come out on the short end of the changes we are causing. But nature doesn't care.

So, I think it would be much better to discuss agriculture as modern versus traditional, since this is where the real conflict is going on in the world today. But even then, we'll see that neither side is really sustainable. What we very much need in order to feed the world's population in the decades and centuries ahead is something new.

According to UN compiled numbers, modern industrial agriculture feeds about 30% of the world's population while consuming 70 percent of the resources used by agriculture. The other 70% are fed by traditional agriculture, using the other 30% of the resources. For these purposes traditional agriculture includes urban gardening, gathering, hunting and fishing. A little arithmetic shows that modern agriculture uses about 5.4 times as many resources as traditional agriculture for each person fed. If we were to completely replace traditional agriculture with modern agriculture, we'd need about 4.5 times as many resources as are currently being used to feed humanity. There simply aren't that many resources available, nowhere near it.

Why then are so many people in favour of expanding modern industrial agriculture and eliminating traditional agriculture? Based on the numbers in that last paragraph, it might seem that we should be doing just the opposite. It's not that simple, of course. Modern agriculture gets higher yields per acre than tradition agriculture, by about 33%. So, doing a little arithmetic again, we see that by these numbers, if we switched over completely to traditional agricultural techniques, we could only feed about 92.5% of our current population. Where modern agriculture, if it were to replace traditional agriculture entirely, could feed about 20% more people than the current population of 7 billion.

That amounts to about 8.6 billion people, still not as many as the 9 billion that the UN predicts we'll have the 2050, but close. And so the business as usual people are keen to expand modern agriculture—they promise that with a few refinements, modern agriculture could feed 9 billion or more people. No doubt it helps that there are profits to be made while doing this. But of course to support this plan requires that you have a complete blind spot for resource depletion and the limits to growth. That you completely ignore sustainability, in other words. And the opposite of sustainable is terminal.

Traditional agriculture isn't fully sustainable either, and neither of these approaches to feeding mankind has the flexibility and resiliency needed to cope with climate change. So, to be honest, we need both fewer people and a new approach to farming that requires much less in the way of inputs and can still function when the climate is much less reliable. I suspect the UN's population predictions are ridiculously optimistic, no doubt based on "all other things being equal". It won't take a lot of ingenuity to get fewer people— war, epidemics and famine will do the trick just fine it we continue on as we are today, though admittedly with much more misery than is really necessary. Educating and empowering women and giving them control of their reproductive lives would be a much better plan, but there is some doubt that it will be applied soon enough.

Fixing our agriculture system is going to be a much taller order. And that's what I'd like to talk about now.

It is important to consider a farm as an integral part of the ecosystem it occurs in. And in order to understand an ecosystem it is useful to be aware of the flows of energy and materials within it. I've talked a great deal about energy and EROEI in this blog already, but I've said relatively little about the role of material resources in the economy. To really understand agriculture, we have to look at how it uses material resources as well as how it uses energy.

Energy flows through a system from higher or more concentrated places to lower or less concentrated places. On the way through, some fraction of that energy can be harnessed to do work, but once it is gone, it's gone. The concept of EROEI applies to the survival of plants and animals just as it does to industries and economies. Every living organism must collect as much or more energy than it needs to live and produce offspring, or it will not manage to survive and reproduce.

Material resources work differently. Materials usually don't flow into an ecosystem in any great quantity and if you don't want to quickly run out of vital resources, it is important that they do not flow out after their initial use, but are reused again and again. I first came upon these ideas about how energy and matter flow in ecosystems in a blog post by John Michael Greer (insert link here) and I want to give him full credit for introducing me to the concept.

It is interesting to note that modern industrial systems, agriculture included, in addition to being extremely profligate in their use of energy, often take a "once through" approach to the use of materials. Materials come in from what are viewed as bottomless sources and eventually flow out to become waste in what are viewed as infinitely large sinks. Both those views are wrong. Since the most easily accessed resources are used first, when they are depleted we turn to less readily accessible resources, which are more expensive. Eventually, this starts to affect the economic viability of the industries involved. Economists would have us believe we can always find a substitute for any material that is becoming seriously depleted. Sadly, it just isn't so. Nor is it so that there is an infinitely large place called "away", which can just go on forever, absorbing our waste without negative effects.

For millions of years our ancestors fed themselves by hunting and gathering, which worked with an EROEI of around 10. This was a highly skilled way of making one's livelihood and usually fairly low in yield, supporting only very spread out populations which had to move around a lot. It was also at the mercy of weather and variations in the populations of edible plants and prey animals. But hunter/gatherers did succeed in spreading to every continent (except Antarctica) with no more than stone age technology and they did it while working fewer hours per week than most of us do today.

Starting as long ago as 9500 BCE, agriculture was invented independently in half a dozen different areas around the world. Agriculture has a lower EROEI than hunting and gathering because it is more complex, but it does give higher yields in smaller areas, which enabled the development of more complex societies. For many of the people involved this was not necessarily an improvement. But for those in charge, it certainly was.

It is interesting to note that during history, many civilizations that practiced unsustainable agriculture and forestry eventually collapsed. That is, after all, the definition of unsustainability. But regardless of that, we eventually ended up where we were a couple of hundred years ago, just before industrialization started. The EROEI of pre-industrial agricultural systems was around 6. Much of this traditional agriculture was not sustainable and even where it was, it already supported just about the maximum population that it could.

Looking at this situation Thomas Malthus said, "The power of population is indefinitely greater than the power in the earth to produce subsistence for man." He predicted that if the growth of population was not restricted, it would eventually outgrow the means of supporting it. This makes complete sense to me, but two centuries later, we can see that Malthus' predictions have not come true, and we seem to be doing fairly well, even with 7 billion mouths to feed and growing. How can this be so? Well, like most of the changes in our society over the last 200 years, it's mainly down to fossils fuels, and the cheap abundant energy they have provided.

The industrialization of our society, driven by that abundant cheap energy, greatly improved our standard of living. This made possible improved nutrition, cleaner water supplies, better sanitation and medical advances including vaccines which resulted in a quickly growing population, mainly due to reduced infant mortality.

The increased agricultural output which has enabled us to feed that ever growing human population has been due mainly to the industrialization of agriculture. And I want to make it clear here that this is not a rant against farmers. I grew up on a farm and think that farming is a fine way of life. But farming, like every other branch of industry during the last couple of centuries, was caught up in the seemingly endless growth driven by cheap and abundant energy from fossil fuels. This growth was effectively an irresistible force—it did no good to talk about limits to growth or sustainability, the individual people caught up in this process had very little choice. And if they did choose not to take part, others were lined up to take their place.

In my next post, I'll be going into considerable detail about the changes that took place in agriculture over the last two centuries and where that leaves us now. In the post after that, I'll talk about what lies ahead for food and farming.

4 comments:

Dan Mills said...

Whilst I agree with you overall I feel that, "Resources used per person fed," is a stupid measurement. Given the *staggering* amount of food waste that occurs in the developed world it gives an incredibly inaccurate view of the efficiency of modern agriculture.

I don't know what the actual efficiency is, but considering about 50% of food produced in North America goes to waste, I reckon it is actually probably much, much higher than traditional agriculture.

Still uses to much. As you say, it doesn't really matter which one is more efficient, as they both fail to actually deal with the looming, and present really, problem that face us.

Irv Mills said...

Waste is an important issue that I'll be dealing with in my next post. Off the cuff, I'd say you're right that the percentage of waste is probably less in modern agriculture, because of better harvesting, shipping and processing technologies. But I think that works against the argument that you are making, if you take the ratios based on total food produced instead of people feed, then modern agriculture is using even more resources per unit of food produced than traditional agriculture.
I need to do more research on this. If you find any articles with information relevant to food waste, please draw my attention to them, via Facebook would be good.
People who are against modern agriculture usually argue that we don't need better yields, but less waste. They take this stand as part of their opposition to genetic engineering. As you know, I am not against genetic engineering, but I do think much of what has been done with it so far has been in the service of "business as usual" in agriculture, and not particularly beneficial in the long run. The real promise of gene tech is in improving the sustainability of agriculture and adaptation to climate change. More on that next time.

Brian Dalton said...

Irv, I find your blog a good thought-provider provoker.I don't think much about the issues you explore(of course I should) and I have to admit that it started out that I read your work just because I know you-(well I thought I did). Now I see that you have valuable observations, insights- things to say that need to be heard-Is there someway you can make this more available -as in publish it or ??? anyway thanks for it and keep em coming.

Irv Mills said...

Thanks Brian! It's good to hear this. Maybe, someday, I'll get enough material together for a book. In the meantime I do publicize each blog post on Facebook, Twitter and LinkedIn, and I keep an eye out for other opportunities as well.