Sunset over Lake Huron |
In this series of posts I've been advising my readers that moving to a small town remote from large population centres, in an area that can supply the basic necessities of water, food and firewood, is a prudent way of coping with the ongoing collapse of BAU (Business as Usual). With the caveat that some advance preparation will be needed to ensure successful use of those resources.
In the next few posts in this series, we'll look at some of the details of how BAU will collapse and how you can prepare to weather that collapse. In the immediate future infrastructure breakdowns will get more frequent and longer until finally it's no longer practical to rely on BAU for the necessities of life. It seems to me that supplies of electrical power, diesel fuel and money will be at the heart of many of the troubles that lie ahead, so I'll concentrate on those areas.
And while I'll mainly be talking about infrastructure breakdowns we should remember that interruptions of service can occur for a couple of other reasons.
The first has to do with the way our economy is organized and how we choose to provide vital services such as power, water, sewers, housing, food, communications, transportation, education, health care and so forth.
Today most of the world's nations are capitalistic, with a distinct neo-liberal flavour. Under such conditions, companies are operated to make a profit and other goals, such as the public good, are strictly secondary. So when a "for profit" company finds its business becoming less profitable they must find ways to increase their charges or to supply less for the same fees or to quit supplying customers in less profitable areas altogether. And if they don't do those things they will either be bought out by companies that will, or they'll suffer bankruptcy. If there doesn't appear to be much chance that another company could make a good profit in the same business then it will never be reestablished. And if the public was relying on that company to provide vital services, then we are just out of luck.
Of course there are other ways of organizing an economy, and in particular other ways of setting up companies to provide infrastructure services. But the argument is often made that for profit companies operating in a free market are more efficient. I would question if there has ever been any such thing as a free market, and whether it would function as predicted in any case. Efficiency in this case is defined as the amount of return on share holders' investments, and has nothing to do with providing a high quality and reliable service to your customers.
But perhaps we should set all that aside in order to focus on the really critical thing, which is the difference between the way such companies work in growing economies versus contracting economies. In a growing economy it is relatively easy to make a profit and do so while supplying a service for the public good. But when the economy begins to contract that becomes more and more difficult for "for profit" companies.
Governments can set up non-profit organizations whose primary goal is to provide services for the public good and they are likely to last longer in a contracting economy. In my experience, contrary to typical capitalist propaganda, they can also be quite efficient. But as the economy contracts so will tax revenues and eventually governments will have to cut back on the services they provide. With good planning though, they can do this in a controlled manner with lots of advanced warning, and give people time to adapt to the situation.
As the economy gets even weaker, co-operatives organized by the people who need the services hold considerable promise. I'll have more to say about this over the next few posts.
The second thing is that if you rely on BAU to make a living, you will find that your own economic circumstances are declining. When you can no longer afford the services you have come to rely on, you'll have find ways to provide them for yourself, and in the process learn how to get by with less, like it or not.
I can consume along with the best of them, and there are certainly all kinds of things that it would be useful to have as we try to become more self reliant. But don't worry too much if you can't afford some of the shiny toys I'll be mentioning in future posts. As well trained consumers we may feel that buying things must be the solution to the problems that face us, but it isn't. Actually, there is no solution to the fix the world is in at the moment, and the best we can do is adapt to the changing conditions. Part of that is learning to get by while consuming less. This is hard for me and I'll bet it's hard for you too. That's why I talked first about preparing by become part of your new community (in posts 7 and 8 of this series), rather that the less important preparations that involve accumulating "stuff".
Back 2012, when I started this blog, the authorities recommended that you be prepared to weather emergencies lasting for as long as three days (72 hours). They were basically saying, "don't rely on us to be there immediately—it may take as long as 72 hours before help arrives." In the meantime, this has been changed to two weeks in some areas. Is emergency response capability declining, or are they expecting more lengthy and severe emergencies? I suspect both. Of course serious "preppers" are laughing at this—they'd recommend that you have supplies on hand for a year or two. I don't disagree, but you have to start somewhere. And as collapse deepens those longer intervals to prepare for will come to seem more reasonable.
Power Outages
Power outages will probably be the most frequent infrastructure failure you'll have to cope with. Short outages have relatively minor impacts, but because electricity is at the heart of so much that goes on in modern civilization, as outages stretch out they start to effect more and more things.
Eventually, it seems very likely that the power grid in many, if not most, areas will cease to function. I encounter two different responses to this idea. Many people cannot conceive that their 24 hour a day, essentially infinite supply of power could every come to an end. Others are fixated on the idea of a sudden and hard crash which will bring the whole of industrial civilization to an end, including the power grid.
I'm somewhere in between, holding what I think is a more detailed and nuanced opinion. Most of the rest of this post is going to be spent talking about how the slow decline of the power grid will go, leaving the responses I would recommend for the next post.
Power outages can be as simple as a utility pole getting knocked over during a traffic accident, to as complex as the grid failures that happened in northeastern North America in 1965 and 2003. And to take it even further, EMPs (electromagnetic pulses) from nuclear weapons or coronal mass ejections (solar flares) can do huge damage to electrical girds which may be very hard to recover from. But I think some of the most common and serious problems with the grid will come from three specific areas:
- The first is equipment failure due to age and/or lack of maintenance, aggravated by overloads such as air conditioning load during summer heat waves. As the economy continues to contract power companies are going to find themselves short of capital and less able to invest in their own systems, leaving those systems more susceptible to failure. /li>
- The second will be damage due to storms that are growing more frequent and more intense due to climate change—things like high winds, tornados and ice storms in particular. Lengthy outages will happen when there are widespread weather related problems combined with shortages of spare parts and limited manpower to install them. Those latter two problems will come mainly from cash strapped utilities trying to save money.
- The third is sabotage. The grid is very exposed to a saboteur who knows what he is doing, and because of its geographically diffuse nature, very hard to secure. As collapse intensifies, there will be increased civil unrest—more angry people looking for easy targets that symbolize the establishment. The grid is certainly one such target.
Of course, these concerns apply to the grid as it exists today, using conventional generation. It seems there is going to be a serious attempt to switch from fossil fuels to renewable energy, primarily solar and wind. Those who are pushing for a "Green New Deal" are telling people that we can use wind and solar to replace fossil fuels, and that in the process more jobs will be created and we'll actually end up more prosperous. This is a very unrealistic dream and just off the top of my head I can think of four serious problems with it:
- What solar and wind produce is electricity. But electricity supplies only 18 to 20% of our current energy use. Most of the rest comes directly from coal, oil and natural gas, and those fuels are used in ways that will be difficult, if not outright impossible, to replace with electricity.
The main issue is that a battery is not nearly as effective a way to store energy as a tank of diesel fuel. And there are definite physical limitations on how much better batteries can get— we can probably improve them by a factor of two, but that's about it. Despite what we keep hearing in the news, it simply isn't practical to use batteries to power airplanes or long distance heavy transport by road, rail or sea. The quantity of batteries needed, and the size and weight of those batteries, is the problem.
There are many industrial processes that use coal or natural gas for heat. Replacing those fuels with electricity may be theoretically possible but we haven't, for the most part, even started to develop ways to do so, much less begun to implement them.
-
Phasing out fossil fuels would require using renewables to supply much larger quantities of electricity than we are currently using. But there are fundamental problems with using renewables to produce even part of the comparatively small amount of electricity we use now.
One aspect of running a power grid that the general public is largely unaware of is that generation must be matched exactly to the load. Since load is something the grid operator cannot control to any great extent, generation that is "dispatchable"—that can be turned on and off on demand and ramped up and down as required—is very important. Conventional generation is dispatchable to varying degrees but renewable energy sources such as solar and wind are intermittent and for the most part not under the control of the grid operator—the very opposite of dispatchable. As such, renewables only exacerbate the problems of running a grid, especially given the lack of feasible large scale storage technologies. Yes, I know there are a number of storage technologies available but none of them are economical to use on the scale that would be required for use in a power grid with intermittent renewable energy sources like solar and wind.
The concept of a "smart grid" which gives greater control of both generation and load offers hope of addressing these problems to some minor degree, but only at the price of adding complexity to the system. And adding complexity never increases reliability.
-
The immediate reason for switching away from fossil fuels is to reduce the amount of CO2 being released into the atmosphere in order to combat climate change. But no one seems to be thinking of the carbon footprint of switching away from carbon. The switchover to renewables would be a massive undertaking powered mainly by fossil fuels, and the amount of CO2 being released would greatly increase during that effort.
Much of this construction effort would also require large quantities of steel and concrete. Making steel and concrete involves the release of CO2, regardless of where the energy comes from—it's inherent to the chemistry of the processes involved.
So it is by no means obvious that we can get off fossil fuels and onto renewables without creating an even worse climate crisis that the one we are currently facing.
-
Renewables have a very low EROEI (energy returned on energy invested). A high EROEI is essential to the functioning of a modern industrial economy--money is just accounting, energy is really what makes the economy go. Any country which adds a large quantity of renewables to its energy mix will lower its overall average EROEI, making it more difficult to support a growing economy and a high tech industrial society. So even if we could somehow manage to switch over entirely to renewables, we'd have trouble sustaining a high enough level of technology to maintain and repair solar and wind generation facilities. And replacing them when they wear out would be a real stretch. Switching to renewables is something we might be able to do once, but then we'd be in big trouble.
All this is of course based on not having to change our lifestyles, not having to accept a lower level of prosperity and consumption. Indeed one frequently hears people talking about increasing economic growth in order to bring the poor parts of the world up to our level of consumption. It is clear to me that this is not going to happen and that what we really need to do is reduce our levels of consumption down to what can be supported without fossil fuels, using local, sustainable, low tech renewables. It is also clear to me that we will not do this voluntarily, that the majority of our efforts will go into maintaining business as usual regardless of the consequences.
Give all these factors time to work and it will become difficult to continue running the power grid as a whole. Some parts of the gird will simply quit working. Others that have proved unreliable, which place the grid as a whole at risk, will eventually have to be excluded from the grid. These islands will grow until the grid as we know it falls apart.
There will be a few areas where generating equipment will continue to function for a long time and will be able to supply local load. Again, the matching generation and load will be a problem since most such generation comes in large chunks and is a long way from large amounts of load. The most hopeful situations are small hydro (water) powered generators, which can be run at less than full capacity and adjust quickly to match varying loads.
Anyway, it seems clear that we can indeed expect more frequent and longer power outages. But what are the effects of these outages, and what can we do to mitigate them?
The effects of power outages
When the power goes out, you lose the lights, heat, cooling, cooking equipment, refrigeration and so forth in your own home. Even most oil, gas and wood heating systems rely on electricity for control, ignition and circulating fans. Then there are all the services that comes to you from outside your home, that you rely on to just work, but which need electricity to do that.
In general, the most critical services run off batteries which are kept fully charged as long as the power is on. When the power goes out, these services keep right on running as if nothing had happened, at least until the batteries are discharged. The batteries for the controls in power stations are rated for eight hours. The batteries in cell phone towers are rated for two to four hours.
Everything I'm finding on the internet says that the central switching stations for land line telephone service should keep working even during long power outages, which implies both batteries and backup generators. I have some doubts about this, and I'll be keeping an eye out for more detailed information.
Many slightly less critical services have generators that start automatically with only a brief interruption when the power goes out and run as long as there is fuel (usually diesel fuel) in the tank. If arrangements have been made to refill that tank, then this can go on for quite a long time.
Even less critical services than these can have a portable generator hooked up to them if need be. This would include facilities operating on battery power, if the power is off so long that the batteries need to be recharged.
Most service stations don't have backup power so you likely won't be able to get fuel (gasoline, diesel, propane) while the power is off. During long outages the many supply chains that are powered by gasoline and/or diesel fuel will be in trouble.
Natural gas pipelines have to be pressurized to keep to gas flowing through them. Some of the pumps used to do this are powered by natural gas, some by electricity. And I suspect that at least some of the controls for the gas powered pumps are electrical. So your natural gas supply, at least in some areas, will be compromised during electrical outages.
The pumps in municipal water and sewage systems need electrical power too. Some may have backup generators, but not all. If you live on a farm or in a very small town, your toilet is likely gravity feed into a septic system and weeping bed, and will work as long as you have water to flush them. Or perhaps you have already set up a composting toilet which requires no power at all. Your water supply is probably from you own well, with a pump driven by an electric motor that uses 240V AC (if you are in North America). Even if you have a generator, you may need an electrician to help you hook it up to that motor.
Refrigeration of food in grocery stores and pharmaceuticals in pharmacies and hospitals will be jeopardized. Fortunately our local hospital does have a backup generator.
Radio and TV can be important sources of information during emergencies. But you will likely find that only a very few of your local stations are set up to keep broadcasting during power outages.
It would also be great if internet service could continue during power outages. I understand it some areas it does, but we get our internet through the local cable TV company, and even short outages to their facilities knock out our internet connection and our cable TV service, even if the power is still on at our place. Your situation may be different—I hope so.
Oddly, or so it seems to me, most traffic lights aren't backed up in any way and stop working when the power is off.
ATMs won't be working, nor the systems that allows us to pay for things by credit and debit cards. Even if you do have cash in hand, you may find many retail outlets are unable to sell you anything when their cash registers and product code scanners aren't working. Many of them may just lock their doors for the duration of the outage.
Not all of them, though—I was quite impressed during a recent outage when I saw the guy behind the counter at a nearby convenience store beavering away with a cash box, battery operated calculator and a notebook to record sales in. It can be done, but one hopes the prices are marked clearly on items rather than encoded in UPCs. This is an example of an individual (or maybe his manager) taking the situation in hand and keeping things working rather than sitting back and letting them fall apart.
No doubt I am missing many of the potential effects of long power outages, but I think this gives you the flavour of what you'll be facing. Next time I'll talk about how you can mitigate the effects of power outages, both short and long, and what your community can do to cope when it finally finds itself permanently isolated from the grid.
Links to the rest of this series of posts, Preparing for (Responding to) Collapse:
- Preparing for Collapse, A Few Rants, Wednesday, 25 July 2018
- Responding to collapse, Part 2: Climate Change, Saturday, 15 September 2018
- Responding to collapse, Part 3: Declining Surplus Energy, Friday, 26 October 2018
- Responding to collapse, Part 4: getting out of the city, Wednesday, 21 November 2018
- Responding to collapse, Part 5: finding a small town, Friday, 28 December 2018
- Responding to Collapse, Part 6: finding a small town, continued, Monday, 28 January 2019
- Responding to Collapse, Part 7: A Team Sport Monday, 18 March 2019
- Responding to Collapse, Part 8: Pitfalls and Practicalities of that Team Sport Tuesday, 26 March 2019
- Responding to Collapse, Part 9: Getting Prepared, Part 1, Thursday, June 13, 2019
- Responding to Collapse, Part 10: the future of the power grid, Wednesday, July 17, 2019
- Responding to Collapse, Part 11: Coping with power outages, the basics, Sunday, August 25, 2019
- Responding to Collapse, Part 12: Coping with longer power outages, Thursday, September 19, 2019
- Responding to Collapse, Part 13: keeping the lights on when the grid goes down forever, Wednesday, 16 October 2019
- Responding to Collapse, Part 14: adapting to life without the grid, Tuesday, 29 October 2019
- Responding to Collapse, Part 15: shortages of diesel fuel, Wednesday, 27 November 2019
- Responding to Collapse, Part 15: Addendum, Saturday, 21 December 2019
Diesel vs. battery powered semi trucks for shipping
Biodiesel powered tractors vs. horses for farming - Responding to Collapse, Part 16: Shortages of Money, Part 1, Tuesday, 3 March 2020
- Responding to Collapse, Part 17: Shortages of Money, Part 2, Friday, 27 March 2020