Wednesday, 21 October 2020

What I've Been Reading, September 2020

Links

Above the Fold

Miscellaneous

  • Neither nasty nor brutish, by Cathryn Townsend, Aeon
    "The Ik – among the poorest people on Earth – have been cast as exemplars of human selfishness. The truth is much more startling."
    This article makes some very good points about selflessness and generousity as basic human traits.
  • The self is not always selfish: Mary Midgley takes on Richard Dawkins, video interview with Mary Midgley on Aeon
    I don't agree with everything she says, but yes, selfishness is certainly not the central element of human fitness, just the opposite.

Coronavirus

Capitalism, Communism, Anarchy

Collapse

  • Here’s What The Real Future Probably Looks Like, by Jessica Wildfire, Medium
    "It’s not all starships and robots."
    The author is clearly not a kollapsnik, and is missing out on some of the basics, but even so she is catching on surprisingly well.

Responding to Collapse,

  • Mutual Aid, RBG, and Where We Go From Here, by Dawn Allen, Legal Reader
    "Our rights never should have rested in RBG’s hands alone. The recent surge of mutual aid groups may help prevent that situation in the future."

Resource Depletion, formerly (and still including) Peak Oil

The change in title stems from the fact that it's not just oil that is peaking.

Climate Change

Economic Contraction and Growing Inequality

  • Forget Shutdowns. It’s ‘Demand Shock’ That’s Killing Our Economy, by James Surowiecki, Medium—Marker
    "Gyms, restaurants, and movie theaters are all reeling for the very same reason"
    Evidently, declining surplus energy is not the only thing that can cause economic contraction. The current pandemic is quite effective, and "opening things up" doesn't help much when people are still concerned about exposing themselves to a very real risk.

Energy

Agriculture

Genetic Engineering

Before jumping to the erroneous conclusion that this section was paid for by Monsanto, stop for a moment and understand that organic agriculture/food is a multi-billion dollar per year industry that relies on fear to get people to buy its product. Millions of dollars are spent to convince you that non-organic food is dangerous. In fact both conventionally grown and organic foods are equally safe. Sadly neither method of agriculture is even remotely substainable.

  • Panic-free GMOs, A Grist Special Series by Nathanael Johnson
    "It’s easy to get information about genetically modified food. There are the dubious anti-GM horror stories that recirculate through social networks. On the other side, there’s the dismissive sighing, eye-rolling, and hand patting of pro-GM partisans. But if you just want a level-headed assessment of the evidence in plain English, that’s in pretty short supply. Fortunately, you’ve found the trove."
    A series of articles that does a pretty good job of presenting the facts about GMOs. I plan to include one article from this series here each month.
  • Elephant in the room: Why getting the GMO story straight is so hard, by Nathanael Johnson, Grist

American Politics

Debunking Resources

These are of such importance that I've decide to leave them here on an ongoing basis.

Pseudoscience, Quacks and Charlatans

Gender and Sexuality

There is No God, and Thou Shall Have No Other Gods

I don't think I've made any secret of the fact that I am an atheist, but I may not have made it clear that I think any sort of worship is a bad thing and that believing in things is to be avoided whenever possible. Indeed, I do not believe in belief itself. That's what the "Thou shall have no other gods" is about—it's not enough to quit believing in whatever God or Gods you were raised to believe in, but also we must avoid other gods, including material wealth, power and fame.

Further, many people today (including most atheists) follow the religion of "progress", which is based on the belief that mankind is destined to follow a road that leads from the caves ever upward to the stars, and that however bad things seem today, they are bound to be better tomorrow due to technological advancement and economic growth. This is very convenient for those who benefit most from economic growth, but it is hardly based on any sort of science and leads to a great deal of confused thinking.

Poverty, Homeless People, Minimum Wage, UBI, Health Care, Affordable Housing

Humour

Books

Fiction

Non-Fiction

Didn't finish any non-fiction books this month, but I'm working my way through a couple of good ones and hope to finish one or maybe both by the end of October.

Wednesday, 7 October 2020

Collapse, you say? Part 3: Inputs and Outputs continued

Kincardine's breakwall awash in the waves

This is the second half of a post that I cut in two because it was just too long (6000+ words). If you haven't read the first half yet, it would be a good idea to do so—what follows will make more sense that way.

That first half finished with a discussion of the problems with fossil fuels as an energy source for our civilization. It's last paragraph is repeated below. Today, we'll go on from there, looking at other inputs that are problematical for our civilization.

Energy, renewable sources

But, you may say, if fossil fuels are no good what about renewable energy sources? There are large amounts of energy available from sources like hydro, biomass, wind, solar and so forth. And they don't involve adding more CO2 to the atmosphere—even biomass is only adding CO2 that was recently taken out of the atmosphere and will be taken out again as more biomass grows. A great many people today believe that renewables can replace fossil fuels and solve both our surplus energy and climate change problems. In fact, it has become very unpopular to challenge that idea, but I am afraid I must do just that.

The problems with switching over to renewable energy sources can be divided into three areas.

  • the political will to do so
  • the economic means to do so
  • the technical feasibility of doing so

Political Will

It is clear that we will have to switch to renewable energy sources if we wish to become sustainable. But it is also clear that, as we'll see in a moment in the section on technical feasibility, renewable energy sources will not be able to support the level of growth and consumption that many of us are accustomed to, and they certainly won't be able to extend that level of prosperity to the poorer parts of the world.

For the overwhelming majority of people, lifestyle is not negotiable. And our current lifestyle demands continued growth and ever increasing prosperity—consumption, convenience, comfort and entertainment. I haven't noticed anyone rioting for the sort of austerity measures that I believe a switch away from fossil fuels would require. So, any plan that can't provide continued material progress is unlikely to be seriously considered, much less implemented. Yes, of course, I realize that we could change our lifestyle, and indeed circumstances may well force us to do so. My point is that most of us don't want to change the way we live, and will resist any attempt to get us to do so.

Plans like the "Green New Deal", which promise to create jobs and stimulate economic growth while switching over from fossil fuels to renewables, are intended to be more palatable. But there is good reason to think they are not economically or technically possible. And, if they were seriously undertaken, they might well make things worse, requiring the consumption of even more fossil fuels in the huge construction project that this switch over would require. This would mean further increases in the amount of CO2 in the atmosphere and would make climate change even worse, bringing about collapse even more quickly. Certainly not what the Green New Deal promises, but what it is likely to deliver.

The Economic Means

The surplus energy problem that I spoke of last time, and the resulting continued economic contraction that is going on, make it seem unlikely that we will have the wherewithal for such a major construction project in the years to come—we are looking at spending trillions of dollars building solar panels, windmills, storage facilities and an enhanced grid. Most of which will only make the surplus energy problem worse.

Technical Feasibility

For me, this is the real deciding factor. Let's consider the technical problems with renewable energy sources in general and then have a look at the issues with specific types of renewables. This will make it clear why I think a switchover to renewables is simply not doable, without drastic changes to our lifestyle.

The current fossil fuel infrastructure—coal mines, oil and gas wells, shipping, rail cars, pipelines, refineries, storage, distribution and retail facilities, and the equipment we have set up to use those fuels—is actually quite compact, owing to the concentrated nature of those fuels. They contain a lot of energy in a small, light package, and this has been the key to their success.

Renewables are more diffuse and require extensive infrastructure to gather and concentrate them to the point where they are useful. Already we are seeing what I call "energy sprawl" spreading across the countryside in the form of wind turbines and solar panels. But the amount of energy we are getting from this sprawl is tiny compared to our total energy use.

The renewable energy that is being proposed as a solution (wind and solar, mainly) comes largely in the form of electricity. Unfortunately, only about 20% of the energy we use today is used in the form of electricity. The rest is used directly in the form of refined fossil fuels to power transportation and to supply heat for industrial processes, space heating and so forth. The two biggest obstacles are electrifying heavy transportation (trucks and ships), and using renewable power to provide heat for manufacturing things like steel and concrete.

Switching over to renewables not only requires us to build huge amounts (5 times more than we currently have) of electrical generation, all of it powered by renewable energy sources, but also that we switch our transportation fleets and industrial infrastructure over to use electricity instead of fossil fuels as a power source.

This a big job that the "powers that be" don't really seem very interested in undertaking, and there are large chunks of it that we don't even know how to do as yet. I'll borrow a term from the nuclear industry here: "paper reactors". Solutions that so far only exist on paper have a tendency to take longer than predicted to implement, and cost a lot more money than expected. Time and money are two things that we don't have in great supply these days.

The power grid, which in most areas is just barely coping with peak loads, will also have to be beefed up by a factor of five to cope with the switch over to an all electric economy. But using the electricity from renewables presents some significant problems for the grid. Our civilization treats the power grid as an infinite source of energy which is available 24/7. In order to provide this, the grid needs energy sources that are "dispatchable". That is, energy sources can be turned on and off at will and ramped up and down as needed to cope with varying loads. This is usually done using a combination of coal, oil, natural gas and hydroelectricity, all of which are to some extent dispatchable.

But wind and solar are anything but dispatchable. The wind blows when it will, and there are often long periods without any wind at all over large geographic areas. The sun shines only during the day, except when there is cloud cover, and solar panels are often be covered with snow in the winter. None of these variations corresponds in any way to the normal variations in load that the grid experiences. In fact, to make even small amounts of intermittent renewable energy fit into the grid, highly dispatchable energy sources like combustion turbines (jet engines connected to generators, burning jet fuel) must be left spinning on standby, ready to compensate instantly when renewables falter.

This hardly makes the grid any "greener" at all. One solution would be to have a way of storing electrical power which could then be used to fill in when renewables let us down. Pumped storage of water is one alternative that is a mature technology. Water is pumped uphill to a reservoir when surplus power is available and then runs down hill through turbines to generate power when extra is needed. The problem is scalability—there are limited locations where reservoirs exists at the top a large change in elevation and near a supply of water. Batteries or compressed air on the scale that is needed here so far only exist on paper, and further development seems likely to run up against some fundamental physical limits.

Even if all these issues can be solved, we'd end up with a grid that is less resilient and more complex—more susceptible to failure.

It should also be noted that equipment like wind turbines, solar cells and batteries have a limited life. This poses two problems—when they wear out, they have to be replaced, and the old equipment has to been gotten rid of. Hopefully recycled, but more likely just disposed of.

A late addtion: Bev, one of my regular readers, pointed out in the comments below something that I had failed to make clear: while the energy from renewables is renewable, the equipment itself is built with largley non-renewable materials, and using up the quantity of materials we are talking about will no doubt lead to new resource depletion problems. It also takes fossil fuels to build, deliver, install, operate, maintain, repair and eventually decommision that equipment. Someday we may be able to power some of those steps with renewables, but initially and for the foreseable future, it's hard to see if there is really any net reduction in the use of fossil fuels when you look at the whole process.

And finally, even if all the technical problems could be solved, wind and solar do not have very good EROEIs, and would make our surplus energy problem even worse.

To bring this all home, let's take a look at the specific forms of renewable energy that we might turn to if we want to get off fossil fuels.

Power from biomass, basically firewood, is a very mature technology, and it has many advantages. While it is produced only during the growing season, it can be harvested and stored for use during winter. It is quite dispatchable and its EROEI is reasonably high, depending on how far it has to be hauled from the forest to where it is going to be used. Unfortunately, it is not highly scalable, since it competes with agriculture for land at a time when we are struggling to grow enough food for the world's growing population.

Hydroelectric power is another mature technology, with good dispatchability and a high EROEI. It is somewhat seasonal and it is not very scalable since most good locations are already in use. Developing the few remaining feasible locations would mean flooding large areas of land with environmental consequences that we should likely see as unacceptable.

Wind power is quite scalable, but intermittent and not dispatchable at all. It's EROEI is in the high teens, which is borderline for our needs, and probably lower if you take storage facilities into account.

Solar power is quite scalable, but intermittent and not dispatchable at all. It's EROEI is quite low, in the mid single digits, less if storage facilities are included in your calculations.

Nuclear fission power is not really a renewable since it relies on finite supplies of fissionable fuel. If a nuclear powered economy is to keep growing, it will run out of fuel in a surprisingly short time, even if spent fuel from the current generation of reactors can be processed for use in newer reactors. Nuclear has limited dispatchability, being best suited to supply base load. It has pretty good scalability, except that it takes a long time to build new nuclear plants, and we would need a lot of them to replace fossil fuels. We must also overcome many political and safety issues before starting to build more nukes. Lastly, the EROEI of nuclear is around 9, largely due to the complexity and safety features involved, so it only makes the surplus energy problem worse.

Nuclear fusion power isn't renewable either, though it's fuel is much more common than fissionables. But it is a "paper technology"— usable fusion reactors have been "just thirty years in the future" since the middle of the twentieth century, and will likely always be so. If we did somehow find the money to finish developing this technology, it would be very expensive to build, and its EROEI would likely be very low due to its high degree of complexity.

All in all, this is not an encouraging picture. You can see why I am so doubtful about switching from fossil fuels to renewables. One the one hand we desperately need to get off fossil fuels to get climate change under control. On the other hand we desperately need fossil fuels (or the elusive "something equivalent") to supply surplus energy to maintain our growing economy and the lifestyles it enables.

I have no confidence that we will even try to address this seemingly unresolvable conflict, and that is one more reason that I am expecting collapse.

Further, as the weighted average of the EROEIs of all a civilization's energy sources declines it is not just economic growth that suffers, but also the ability to maintain infrastructure. This includes the ability to build high tech equipment, including things like solar panels and wind turbines. At some point, as our industrial civilization continues to collapse, we will find ourselves restricted to low tech renewables and unable to maintain a large scale power grid. We'll be forced to drastically reduce our consumption of energy, and to adapt our use of energy to the intermittency of the sources, rather than the other way around.

So far I have only addressed the problems with energy inputs to our civilization, but there are other inputs that also present significant challenges.

The Ecosystem, and ecosystem services

Figure 2, from my last post

The circle enclosing industrial civilization in the diagram above is misleading in that it would tend to suggest there is a boundary separating civilization from the environment, when it is really just another part of the environment. I have use a dashed line, hoping to indicated that many things flow freely between our civilization and its environment. There is a whole category of such things—inputs to our civilization—that we are absolutely dependent upon. Often referred to as "ecosystem services", these inputs are things we tend not to be aware of, in much the same way as fish are not aware of water.

They include breathable air, potable water, a reliable climate and moderate weather, arable soil, grasslands, forests and the animals living on/in them, waters and the fisheries they provide, and so on. These things are available to us free of charge and we would simply could not do without them.

It is important to understand that the ecosystem can only supply its services at a certain maximum rate—its carrying capacity. If we use those services at a higher rate, the ecosystem suffers and that carrying capacity is reduced. Many of the waste outputs of our civilization can also damage the ecosphere, again reducing its carrying capacity. And we continue to convert nature into farms, roads and cities, yet again reducing its carrying capacity.

This has created the current situation where we are temporarily in "overshoot", using more than 100% of the planet's carrying capacity. We are able to do this because there is a certain amount of stored capacity within the system. Drawing on that capacity has lulled us into a false sense of security. But rest assured, the situation is temporary and shortly the damage to the ecosphere will become obvious, and its declining ability to support us will have disastrous consequences.

To put some numbers on this, in the early 1970s when The Limits to Growth was published, we were using about 85% of the planet's carrying capacity. There was, at that point, at least hypothetically, an opportunity to put the brakes on economic growth and start living sustainably. Of course, we did not do so and now we are using around 165% of that carrying capacity. If we bring the poorer part of the world up to a standard of living similar to that of the developed nations, it would take about 500% of that carrying capacity to support the human race. Many suggest we should do exactly that, as a matter of social and economic justice.

It is hard to disagree with that, in and of itself. But long before this happens, of course, the ecosphere will have collapsed and suffered a drastic decrease in its carrying capacity.

Three factors are involved in our impact on the ecosphere: population, affluence (consumption) and technology. This can be represented by the equation I=PAT.

Population and affluence are politically sensitive subjects, so many people have focused on using technology to reduce our footprint. This is known as "decoupling", since the aim is to decouple rising population and consumption from their effects on the ecosphere, to allow growth to continue without having harmful effects. It turns out decoupling has not yet even begun and is very unlikely to ever be achieved. It is largely a myth. Here are a couple of links (1, 2), to articles that go into this in detail.

In addition to promoting myths about decoupling, those who do not wish growth to stop quibble about exactly what the planet's carrying capacity actually is and just how far into overshoot we currently are. This accomplishes nothing, since whatever that carrying capacity actually is, continued exponential growth will quickly take us past it into overshoot.

So it would seem we should do something about population and/or affluence. Population is such a hot button issue that one can hardly discuss it in polite company. Understandably so, since reducing population must involve either reducing fertility or increasing the death rate. Indeed people have been accused of being "eco-fascists" because they see the need to reduce our population, and look to the most populous areas as the first place to take action. I think "eco-fascist" is a reasonable term, since the most populous areas are also the poorest places on the planet and our impact on the ecosystem is the product of both population and affluence. In the developed world our consumption is so high that even though we have far fewer people, our impact is much larger than that of the poorer parts of the world.

Figure 3

As this chart (Figure 3) shows, the richest 10% of the planet's population does close to 60% of the consumption. The richest 20% does over 75% of it (17.6+59=76.6). So, reducing consumption in the more affluent parts of the world would be a good start to coping with our problems because it would immediately take us out of overshoot and give us some breathing room to address the damage we've been doing to the ecosystem.

Figure 4

As this revised consumption chart (Figure 4) shows, if we could reduce our consumption by 50%, it would reduce our ecological impact down to 82.5% of the planet's carrying capacity, while actually increasing the consumption level of the lowest seven deciles of the population, and only reducing the consumption levels of the top three deciles. This would seem to satisfy our yearning for social and environmental justice and significantly delay, if not prevent, collapse. But since the most affluent people, those in the tenth decile, are also in control of the situation, it seems unlikely that we'll make a serious attempt to implement that solution unless we are forced to do so by events beyond our control that bear a strong resemblance to collapse.

You may say that our population problem exists because our capacity to provide food has increased and our capacity to reproduce has responded, not the other way around. I don't disagree, but I don't think it is very useful to point that out. Deliberately cutting back on food production and letting people starve in order to reduce our impact on the ecosystem is morally repugnant. It is also not particularly effective since the poor would be effected first and they are not the major contributors to our impact on the ecosystem.

It has also been observed that as countries get richer, their birthrate goes down. Extrapolating current trends (including continued development in the developing nations), the UN calculates that our population will top out around 10 billion late this century and then begin to decline. They would tell you that all we have do is hang on until then and all will be well. But again, I disagree. Long before our population reaches 10 billion, especially if nothing is done to reduce our rate of consumption, the ecosystem will collapse and its carrying capacity will crash down to a level that can support only a tiny fraction of our present population. I think 10 to 20% would be an optimistic prediction.

Overuse of Fossil Water

This post is already quite a bit longer than I usually aim for, and I have only covered what I see as the most urgent input and output issues. There are many other areas that I haven't begun to cover, and which I will have to leave for another day. But there is one more input issue that I just can't leave out, and that is the depletion of fossil water.

Many of the important agricultural areas around the world rely on irrigation, and water for that irrigation is pumped out of fossil aquifers. That is, underground reservoirs that took hundreds of thousands of years to accumulate. The current rate of use is many times greater than the current rate of replenishment, and it is only a matter of time, and not much time, until they run dry.

The consequences for agriculture will seriously debilitate our civilization's ability feed us.

Summing it all up

We have seen again and again, from the start to the finish of this post, and the previous one, that resource depletion of various sorts, and depletion of the sinks into which we dispose of our wastes, seriously threaten our civilization. Any one of these issues is enough, all on its own, to compromise that civilization's ability to provide us with the necessities of life. In other words, to bring about collapse. And many of them interact in ways that just make the situation worse.

But inputs and outputs are not the whole story. The interior workings of our civilization are replete with issues that threaten its ongoing survival. Next time, we'll have a close look at some of those issues.



Links to the rest of this series of posts, Collapse, you say?

Tuesday, 29 September 2020

Collapse, you say? Part 2: Inputs and Outputs

Waves breaking along the Lake Huron shore—and this on a relatively quiet day.

The title of this series of posts comes from the typical reaction you get when suggesting that our civiiization might be collapsing, "Collapse you say, surely not!" In my last post I said that I am convinced it is already happening or at least will happen at some point soon. Then I went on to explain what I mean by collapse—the process by which a civilization declines in its ability to provide the necessities of life to its members, the end result being that people are forced to fend for themselves or perish.

It seems to me that this is in fact happening today—that for all but a tiny minority at the "top", things are getting continually worse. The how and why of this process is the subject of this post and the ones that follow it.

The means of production and distribution that provide us with the necessities of life in modern industrial civilization require certain inputs and produce certain outputs. Today I want to the look at the problems posed in acquiring those inputs and disposing of those outputs.

I would guess that it's clear that by inputs I mean the energy and materials required to make the things we need. But what I mean by outputs may be less clear. I am not referring to the goods that are produced from the inputs, but the waste products produced in the process and the garbage that is left over when we are done using those goods.

But why should these inputs and outputs constitute problems?

Conventional thinking has our civilization in a box, separate from our planet and its ecosphere. The inputs (energy and materials) our civilization uses come from sources that are seen as essentially infinite and the outputs (waste heat and waste materials) are discharged into sinks that are also seen as being essentially infinite in size. Given all that, no reason is seen for progress—economic growth in this context—not continuing for the foreseeable future. This way of looking at things typifies some of the blind spots of modern thinking on economics and business.

Figure 1

Figure 1 illustrates what I am talking about. As long as there were relatively few people on our planet, and they weren't consuming excessively, it's easy to see how we might have looked at things this way. But now that we are well on our way to filling up the planet—or more likely well beyond that point—this is no longer valid. And sure, many people are aware that this is a very unrealistic picture, but the people who are running things, even those who verbally acknowledge the realities, continue to act as if there are no limits built into the system. In a future post we'll look at why this is so, but for now it suffices to say that it truly is the case.

Figure 2

Figure 2 is a different diagram, which provides a more realistic depiction of things as they exist today.

First of all, our civilization exists on a finite planet, entirely within that planet's ecosphere, with no real separation from it (note the dashed border). Our inputs are taken from that finite source and our wastes are discharged back into that same finite space, used as a sink for waste heat and all our material wastes. This has some truly nasty consequences.

Inputs and outputs come in two forms: energy and materials. Energy flows from more concentrated to less concentrated forms, and regardless of where it comes from, is eventually radiated away from the planet as waste heat. Because of this, at any one level, we only get to use energy once. Materials stay around and can be reused, but generally change from more organized forms to less organized, (and less useful) forms as time passes.

For the planet itself, on the relatively short timescales we are considering, the only significant inputs and outputs are in the form of energy—sunlight in and waste heat out. This means that the planet isn't a closed system and incoming energy can be used to arrange matter into more complex forms, converting the energy used to a less concentrated form in the process. That's the good news—the rest of the news is bad.

Outputs

Let's look at outputs first, since that will make it easier to understand some of the problems with inputs. As I said, the outputs I am talking about are the wastes from processes within our society, and the garbage left over when we are done with the products of those processes. We simply throw these things away, but the trouble is that there is no such place as "away". The sinks into which we dispose of wastes are part of the very same environment where we get our inputs from, so this is much like shitting in our own nest. And in a great many cases it is not necessary at all. Many of these end products could, with relatively little effort, be fed back into the processes, and not treated as "wastes" at all.

That we haven't "circularized" our use of materials is a really bad sign. Why we continue to do this is inherent to the internal workings of our civilization and I'll go into the details of that in a future post. For now it is sufficient to understand that as long as that civilization exists in its present form, it's outputs will continue to be a problem.

There are a great many different types of pollution, but for our purposes today I'll concentrate on two particular type of waste—carbon dioxide and methane.

Carbon dioxide (CO2) is produced in the burning of fossil fuels and biomass, and in the processes we use to make things like steel and concrete, essential building materials of our civilization. CO2 is a major contributor to the greenhouse effect and consequently climate change, and is also the cause of ocean acidification.

Methane (natural gas, CH4) has been touted as a replacement for coal and oil since it gives off less (but not zero) CO2 when burned. But it is an even more potent greenhouse gas than CO2. Between the wellhead and where it is used a great deal of methane leaks into the atmosphere—probably enough to overshadow any reduction in CO2 released by burning natural gas instead of other fossil fuels. Methane is also produced during the decay of organic matter and by the digestive systems of many animals. Warming due to climate change is releasing methane currently trapped in permafrost and in methane clathrate hydrates at the bottom of the Arctic Ocean, further intensifying the warming process.

Ocean acidification the lesser known evil twin of climate change, occurs when CO2 is dissolved in water. An estimated 30–40% of the carbon dioxide from human activity released into the atmosphere dissolves into oceans, rivers and lakes. Some of it reacts with the water to form carbonic acid. Some of the resulting carbonic acid molecules dissociate into a bicarbonate ion and a hydrogen ion, thus increasing ocean acidity (H+ ion concentration).

Increasing acidity is thought to have a range of potentially harmful consequences for marine organisms such as depressing metabolic rates and immune responses in some organisms and causing coral bleaching. A net decrease in the amount of carbonate ions available may make it more difficult for marine calcifying organisms, such as coral and some plankton, to form biogenic calcium carbonate, and such structures become vulnerable to dissolution. Ongoing acidification of the oceans may threaten food chains linked with the oceans.

(Thanks to Wikipedia for the last two paragraphs.)

These are food chains that we sit at the top of, with many people, especially in poorer nations, relying heavily on seafood for protein.

Climate change has been in the news a lot lately, with a wide range of people expressing concern about its negative effects on our future. If, despite this, you are still a doubter or denier, you're in the wrong place on the internet, and need not bother leaving any comments. In my experience, if you scratch a climate change denier, you will find beneath the surface a rich person who is worried about losing their privilege.

So, climate change is real and it is driven by increases in greenhouse gases (CO2 and CH4 among others) in the atmosphere which cause the planet to retain more of the sun's heat. It has also been called "global warming", since it causes the overall average temperature of the planet to going up. The high latitudes in particular are already experiencing temperature increases. Eventually this is going to cause enough melting of glaciers to make for a significant increase in sea level.

In the meantime, climate change is also causing more frequent and heavier storms, which combined with even small increases in sea level, are causing a lot of damage along the oceans' shores. Such storms are also causing more frequent and serious flooding of many rivers.

Climate change is also intensifying droughts in many other areas, and in some of those areas this is leading to wild fires.

How does all this tie into collapse?

Storm surges, high winds, river flooding and wild fires are doing a great deal of damage to human settlements, at a time when our economy is struggling and the added cost of rebuilding can scarcely be afforded. Especially since we tend to rebuild in the same areas, leaving rebuilt settlements just as exposed as they were before.

The effects of climate change on agriculture are even more serious. In the ten or so millennia since we started practicing agriculture the climate on this planet has been particularly friendly to that endeavour. Farmers have been able to count on reliable temperatures and rainfall. This is now starting to change and as the rate of that change picks up over the coming decades, it is going to be very challenging to adapt to. This at a time when we are struggling to keep up to the demands of a growing and ever more affluent population for food and when there is little left in the way of wilderness to expand our farms into.

Even if climate change was the only problem we faced, it is serious enough to place the continued survival of our species into question. We are facing, to quote Jem Bendell, "inevitable collapse, probable catastrophe and possible extinction."

The threat of climate change is serious enough that most people who worry about such things at all are concentrating on it alone. Unfortunately, they are largely ignoring looming problems with the inputs required by our civilization.

Inputs

The problem with inputs is "resource depletion". We live on a finite planet and we can really access only a small part of it—the lower part of the atmosphere, the oceans and a few thousand feet at the top of the crust. Within that volume, there are finite supplies of the resources that we rely on.

Several problems result from the way we access and use those resources.

We generally access the lowest hanging fruit first. This means that the most convenient, easily accessible and highest quality resources get used up first. That makes sense as far as it goes, but it means as time goes by we are forced to use less easily accessible and lower quality resources. This takes more energy and more complex equipment, and is more costly.

Many of the resources we rely on are non-renewable—there is a finite amount of them on this planet, and "they" aren't making any more. Further, we use them in very wasteful ways. It is important to be aware here that, even at best, there is always some irreducible waste in our use of any resource, but currently we tend to make things, use them once and throw them "away". This means that depletion of many resources is happening thousands of times more quickly than it really needs to, and as I said in the section on outputs, that waste is accumulating in the environment.

Some of the resources we use are renewable, but the processes by which they are renewed work at a limited rate. We are using many of these so called renewable resources at greater than their replacement rate, and so they too are becoming depleted.

Conventional economists will tell you that when a resource starts to get rare, its price goes up, encouraging the development of substitutes. This is true to some limited extent, but many of the most critical resources simply have no viable substitutes. Not unless we are willing to make significant and unwelcome changes to the way we live.

At this point, we should look at some specific resources and the unique problems each of them presents.

Energy, Fossil fuels

Despite what conventional economists would tell you, energy (not money) is actually the keystone resource for our economy. Nothing happens inside our civilization without energy as an input and degraded energy (waste heat) as an output. Money functions as a medium of exchange, a unit of account and a store of value, all of which is very useful, but energy is what makes the economy function and grow. About 80% of that energy currently comes from fossil fuels (primarily coal, oil and natural gas). The remaining 20% comes from sources that we can only access using equipment that is both made using fossil fuels and powered by them.

So, our civilization is utterly dependent on having a cheap and abundant supply of fossil fuels. "Peak Oil" enthusiasts have been saying for decades now that we'll soon run out of oil and things will come to a grinding halt. In fact, though, there are still large quantities of hydrocarbons to be found in the earth's crust, so you might ask, "What's the problem?"

Well, there are two problems with continuing to burn fossil fuels.

One is the consequences for the climate of burning hydrocarbons and releasing ever larger amounts of carbon dioxide into the atmosphere. This is a very serious problem, for which we are having trouble finding and implementing any sort of solution.

The other problem, I'll be calling it "the surplus energy problem", is in many ways more complex and more serious.

Because we use various forms of technology to access energy, many people think that technology makes energy, and with improved technology we can always make more energy. Or, in this case, access the difficult to access hydrocarbons that currently remain in the ground. But in fact, the opposite is true—technology uses energy and won't work without it.

The energy that remains after we've powered the processes used to acquire that energy is referred to as "surplus energy." For instance, the technology used to drill oil wells and pump crude oil out of the ground uses energy. Back in the day, it used to take the energy equivalent of about one barrel of oil to get 100 barrels of oil out of the ground, leaving a surplus energy equivalent to 99 barrels of oil. This is usually expressed as "Energy Returned on Energy Invested" (EROEI), in this case 100/1, giving an EROEI of 100. Another way of looking at this is to talk about the Energy Cost of Energy (ECoE). In this case that would be 1/100, or 1%. Note that both these numbers are just bare numbers without units, and most significantly without a dollar sign in front of them. The "money cost" of energy is another thing entirely and since it is influenced by speculation on future supply and by fluctuations in demand (as we have seen in 2020 during the pandemic) it is not a reliable indicator of the actual cost of energy in energy terms, or the future availability of energy.

Conventional oil discoveries have not been keeping up with depletion for some time and our use of conventional oil actually peaked in the last few years. So we have been forced to switch to lower quality and more difficult to access sources. Conventional oil today has an EROEI ranging from 10 to 30. Tight oil and gas (from fracking), heavy oil and the "dilbit" (diluted bitumen) made from tar sands all have EROEIs less than 5, or ECoEs of 20% or greater.

"So what?" you might say. As long as the net amount of energy available is sufficient to power our civilization, what's the problem? Well, it's not just the amount of energy available from any particular source that really counts, but the EROEI. Or more precisely the weighted average of the EROEIs of all the various energy sources an economy uses. That number needs to be around 15 or more to keep that economy growing.

When the average EROEI goes below 15, growth slows and eventually stops and it becomes difficult to raise enough capital to even maintain existing infrastructure. Why our civilization needs to grow is a topic for another day, but it certainly does. This is what most people are missing about energy. Yes, a country can use debt to finance access to low EROEI energy resources in order to keep the economy going. But only for a while, until its economy contracts to the point where things begin to fall apart. This is certainly the case in the US. Fracking has made sufficient energy available, at what seems like a reasonable dollar price, but the real economy is mysteriously contracting, and debt is continually growing. Both economists and politicians, while putting on a brave face, are hard pressed to do anything about it, because they don't understand the surplus energy problem.

As we saw in the section on "Outputs", there are pressing reasons not to continue burning fossil fuels. But even if that were not the case, it would not be possible to continue running a growth based industrial civilization on the low EROEI fossil energy sources now available to us. For this reason alone, collapse seems like a sure thing to me, and I would say it has been underway since oil production in the continental U.S. peaked in the early 1970s.

But, you may say, what about renewable energy sources? Like non-conventional fossil fuels there are large amounts of energy available from sources like hydro, biomass, wind, solar and so forth. A great many people today believe that renewables can replace fossil fuels and solve both our surplus energy and climate change problems. In fact it has become very unpopular to challenge that idea, but I am afraid I must do just that.

This post ened up at over 6000 words long, enough to try the patience of even my most loyal readers. So I have split it in two at this point, leaving the second half for my next post, which will pick up from here and cover renewable energy sources, ecosystem services and fossil water.



Links to the rest of this series of posts, Collapse, you say?

Wednesday, 23 September 2020

What I've Been Reading, August 2020

Links

Above the Fold

Miscellaneous

Suddenly, "liberal" is a dirty word

And with good reason, it seems.

Black Lives Matter

Coronavirus

Capitalism, Communism, Anarchy

The New Fascism, and Antifa

I hear a lot of well educated people saying that the people some of us are calling fascists don't meet all the criteria for being "real" fascists. Others have even accused us of calling anyone we disagree with a fascist. I predict that a few decades (maybe just a few years) from now those same people will be saying they wish they hadn't been quite so fussy with their definitions, and had acted sooner to oppose these "new fascists", even if they weren't identical to the fascists of the twentieth century.

  • This Is How It Happens, by Colin Horgan, Medium History
    "A study of men in Hitler’s Germany shows how people allow tyranny to spread"
    "What happened here was the gradual habituation of the people, little by little, to being governed by surprise,” the philologist told Mayer. The Nazi dictatorship was “diverting,” he said, in that it kept people “so busy with continuous changes and ‘crises’ and so fascinated…by the machinations of the ‘national enemies’ without and within, that we had no time to think about these dreadful things that were growing, little by little, all around us."
  • Fascism Has Arrived in America. Now What? by Danielle Moodie, Medium—Zora
    "Trump is an autocrat, and here’s why you should care"

Collapse

Genetic Engineering

Before jumping to the erroneous conclusion that this section was paid for by Monsanto, stop for a moment and understand that organic agriculture/food is a multi-billion dollar per year industry that relies on fear to get people to buy its product. Millions of dollars are spent to convince you that non-organic food is dangerous. In fact both conventionally grown and organic foods are equally safe. Sadly neither method of agriculture is even remotely substainable.

  • Panic-free GMOs, A Grist Special Series by Nathanael Johnson
    "It’s easy to get information about genetically modified food. There are the dubious anti-GM horror stories that recirculate through social networks. On the other side, there’s the dismissive sighing, eye-rolling, and hand patting of pro-GM partisans. But if you just want a level-headed assessment of the evidence in plain English, that’s in pretty short supply. Fortunately, you’ve found the trove."
    A series of articles that does a pretty good job of presenting the facts about GMOs. I plan to include one article from this series here each month.
  • Is extremism in defense of GM food a vice? by Nathanael Johnson, Grist

American Politics

  • Is Trump Planning a Coup d’√Čtat? by Sasha Abramsky,
    "Many observers—including Republicans—worry that he is. They’re organizing now to stop him."
    "Fried, a student of history who chooses his words carefully, has concluded that Trump and his team are 'certainly racist, contemptuous of ordinary democratic and constitutional norms, and they believe their cause, their interests, are really the interests of the nation and therefore anything that keeps them in power is in the national interest. Does that make you a fascist? It kind of looks that way, doesn’t it?'"

Canadian Politics

Linguistics

  • Real talk, by Vyvyan Evans, Aeon
    "For decades, the idea of a language instinct has dominated linguistics. It is simple, powerful and completely wrong."

Debunking Resources

These are of such importance that I've decide to leave them here on an ongoing basis.

Science

Lacking an Owner's Manual

The human body/mind/spirit doesn't come with an owner's manual, and we continually struggle to figure out how best to operate them.

Gender and Sexuality

There is No God, and Thou Shall Have No Other Gods

I don't think I've made any secret of the fact that I am an atheist, but I may not have made it clear that I think any sort of worship is a bad thing and that believing in things is to be avoided whenever possible. Indeed, I do not believe in belief itself. That's what the "Thou shall have no other gods" is about—it's not enough to quit believing in whatever God or Gods you were raised to believe in, but also we must avoid other gods, including material wealth, power and fame.

Further, many people today (including most atheists) follow the religion of "progress", which is based on the belief that mankind is destined to follow a road that leads from the caves ever upward to the stars, and that however bad things seem today, they are bound to be better tomorrow due to technological advancement and economic growth. This is very convenient for those who benefit most from economic growth, but it is hardly based on any sort of science and leads to a great deal of confused thinking.

Poverty, Homeless People, Minimum Wage, UBI, Health Care, Affordable Housing

Humour

These are great times for political satire.

Books

Fiction

Non-Fiction

Thursday, 20 August 2020

What I've Been Reading, July 2020

Links

Above the Fold

Miscellaneous

At the Doomstead Diner

Over the last while I've gotten together on Skype with RE at the Doomstead Diner and made a few videos. Here are links to what we've done so far. There is more to come.

Defund the Police

Coronavirus

Capitalism, Communism, Anarchy

The New Fascism, and Antifa

I hear a lot of well educated people saying that the people some of us are calling fascists don't meet all the criteria for being "real" fascists. Others have even accused us of calling anyone we disagree with a fascist. I predict that a few decades from now those same people will be saying they wish they hadn't been quite so fussy with their definitions, and had acted sooner to oppose these "new fascists", even if they weren't identical to the fascists of the twentieth century.

Economic Contraction and Growing Inequality

  • The Ides of Autumn--Seeds, Stagflation and Crash Risk , by Tim Morgan, Surplus Energy Economics
    "For anyone involved in economic interpretation, these are hectic times. They’re frustrating times, too, for those of us who understand that the economy is an energy system, but have to watch from the sidelines as huge mistakes are made on the false premise that economics is ‘the study of money’, and that energy is ‘just another input’."

Recipes and Cooking

  • Bouillon Brodo Caldo Dashi, Medium-Anthology of Cooking
    "The broths of several cultures, their preparation and use"
    I find broths freeze quite well. I also tend to cook them quite a bit longer than this piece suggests, like overnight. Very few tings benefit by being turned in a race.

Genetic Engineering

Before jumping to the erroneous conclusion that this section was paid for by Monsanto, stop for a moment and understand that organic agriculture/food is a multi-billion dollar per year industry that relies on fear to get people to buy its product. Millions of dollars are spent to convince you that non-organic food is dangerous. In fact both conventionally grown and organic foods are equally safe. Sadly neither method of agriculture is even remotely substainable.

  • Panic-free GMOs, A Grist Special Series by Nathanael Johnson
    "It’s easy to get information about genetically modified food. There are the dubious anti-GM horror stories that recirculate through social networks. On the other side, there’s the dismissive sighing, eye-rolling, and hand patting of pro-GM partisans. But if you just want a level-headed assessment of the evidence in plain English, that’s in pretty short supply. Fortunately, you’ve found the trove."
    A series of articles that does a pretty good job of presenting the facts about GMOs. I plan to include one article from this series here each month.
  • Genetically modified literature (in which I read books so you don’t have to), by Nathanael Johnson, Grist

Practical Skills

American Politics

  • What Could Happen If Donald Trump Rejects Electoral Defeat?, by Jabin Botsford, The New Yorker
    "A new book conjures three scenarios in which President Trump could lose the election but not step down."
  • Are you a conservative? It’s a trick question., by Jennifer Rubin, The Washington Post
    This article makes some good points, but I'd say that conservatism is a force for evil, and still a powerful one.
  • Biden’s Big-Tent Strategy Seems to Be Working, by John Cassidy, The New Yorker
    "None of this means that Biden is a lock for the Oval Office. Between now and November 3rd, something could conceivably shift the momentum against him, such as a Vice-Presidential pick that backfires, a major slipup in the debates, or a surprising economic upturn. Right now, though, the challenger’s strategy of keeping the focus on the incumbent and pitching a broad tent that accommodates anyone who wants to see the back of Trump is working well."

Canadian Politics

Debunking Resources

These are of such importance that I've decide to leave them here on an ongoing basis.

Science Based Medicine

"Science is properly reductionist for a reason. In order to understand the world, and to have reliable empirical knowledge, you have to build your theories from the bottom up, but also confirm them from the top down. This means that we correlate ultimate effects with basic knowledge about mechanisms. Scientific knowledge does not have to flow in any particular direction. At times we discover something fundamental about the world, and then look for implications and applications. At other times we observe effects in the world, and then reverse engineer their cause. In either case real scientific phenomena become increasingly embedded in this network of knowledge. When a claim remains persistently isolated at one level, and neither leads to further applications or to more basic discoveries about the nature of reality, that is suspect." Steven Novella

There is No God, and Thou Shall Have No Other Gods

I don't think I've made any secret of the fact that I am an atheist, but I may not have made it clear that I think any sort of worship is a bad thing and that believing in things is to be avoided whenever possible. Indeed, I do not believe in belief itself. That's what the "Thou shall have no other gods" is about—it's not enough to quit believing in whatever God or Gods you were raised to believe in, but also we must avoid other gods, including material wealth, power and fame.

Further, many people today (including most atheists) follow the religion of "progress", which is based on the belief that mankind is destined to follow a road that leads from the caves ever upward to the stars, and that however bad things seem today, they are bound to be better tomorrow due to technological advancement and economic growth. This is very convenient for those who benefit most from economic growth, but it is hardly based on any sort of science and leads to a great many confused and incorrect ideas.

Poverty, Homeless People, Minimum Wage, UBI, Health Care, Affordable Housing

Artificial Intelligence

  • If You Think GPT-3 Makes Coders Obsolete, You Probably Do Not Write Code, by Chris I., Medium--Data Science
    "In rebuttal of data scientists and developers going obsolete"
  • Books

    Fiction

    Non-Fiction